Skip to content.

UMER

Sections
Personal tools
You are here: Home » Technical Data » UMER Magnet Data (2010)

UMER Magnet Data (2010)

Summary tables of UMER magnet parameters, obtained from first-principles calculations. These revised numbers use the most accurate models available as of 10/2010.

Focusing fields

 

 

leff

hard edge

Peak grad/A

Integ. grad/A

Physical

Physical

 

(cm)

factor, f(3)

(G/cm/A)

(G/A)(4)

Length (cm)

Radius (cm)

Ring Quad(1)

4.475

0.8354

3.609

13.50

4.65

2.95

QR1

5.999

0.8965

1.010

5.446

5.40

5.00

YQ(2)

 

 

1.110

5.541

5.40

5.00

BD

 

 

 

x/y = 0.146 / 0.565

 

 

PD

 

 

 

x/y = ? / 0.0410

 

 

 

 

 

 

 

 

 

(1)   In use after 8/15/2010

(2)   Same as QR1, but displaced about 1.5 cm from beam orbit, and tilted 10°.  The numbers along the bent reference trajectory are thus different.  It is not clear which is to be used.

(3)   The actual peak gradient should be multiplied by this factor to give that for a hard-edge model

(4)   Useful for modeling vertical focusing from the dipoles as a thin lens (note the slight horizontal focusing results from the sextupole term):
        1/f =
kappao leff = integrated gradient / [Brho]

 

Bending Fields

 

 

leff(1)

leff (2)

Peak field/A

Integ. Field/A

Physical

Physical

Dipoles

(cm)

(cm)

(G/A)

(G-cm/A) (3)

Length (cm)

Radius (cm)

BD (Bending)

3.757

3.819

5.216

19.917

4.437

2.872

PD (Pulsed)

5.18

5.006

0.382

1.913

4.40

4.40

Steerers:

 

 

 

 

 

 

 Short(4)

3.063

-

1.18

3.627

1.54

2.79

 3-3/8” flange(5)

5.183

-

0.640

3.317

2.37

4.726

 4-1/2” flange(6)

5.670

-

0.685

3.886

3.80

5.75

 

 

 

 

 

 

 

(1)   Calculated along the longitudinal axis of the magnet

(2)   Calculated along the reference trajectory, or s-axis

(3)   Rigidity of a 10 keV electron beam, [Brho] = 338.859 G-cm
So, to bend the beam 10
°, the integrated field should be 59.142 G-cm
(58.01 G-cm if the calculation is performed non-relativistically)

(4)   SD6/SD7

(5)   Most injector steerers, except SD4 is a 4-1/2” and SD5 is a regular bending dipole

(6)   All RSVs (Ring vertical steerers)


Historic Data + Other Models

 

 

leff

hard edge

Peak grad/A

Integ. grad/A

Physical

Physical

 

(cm)

factor, f

(G/cm/A)

(G/A)

Length (cm)

Radius (cm)

3rd-Gen(1)

4.475

0.8360

3.600

13.48

4.65

2.95

Loop Model(2)

4.469

0.8374

3.608

13.50

4.65

2.95

2nd-Gen(3)

5.043

0.7206

4.14

15.022

4.65

2.79

 

 

 

 

 

 

 

(1)   In use 8/2006 – 8/2010, has a short in one of the smaller loops.

(2)   Model used in most simulations prior to mid-2010, where the two-layer spiral pattern is represented as a single layer of loops.

(3)   Slightly smaller quadrupoles used initially on the ring.  Completely decommissioned 8/2006.

 

Solenoid

 

Field on axis, fitted from empirical measurements:

             Bz(z) =  Bo exp(-z/d)2 [sech(z/b) + C sinh2(z/b)]

 where, for the UMER solenoid:

            d = 4.82 cm

b = 3.43 cm

C = 0.017

 

Solenoid field as a function of solenoid current:

             B_SOL [Gauss]  = (1.35 + 17.597*I_SOL [A])

 

Solenoid effective length = 6.5708 [cm] - 0.00029 kappao [m-2]

Peak field factor             = 0.69448

 

Description Files for Main UMER Magnets (WARP UMERGeometry defaults highlighted)

 

Magnet

MagLi Spc File

WARP pdb file

Comments

Ring Quads (4th)

Q3DBLSP.spc

RQUAD3S.MAGLI.pdb

Spiral Model

Ring Quads (4th)

QMAG31.spc

RQUAD3.MAGLI.pdb

1 layer of loops

Ring Quads (3rd)

Q3GLITCH.spc

RQUAD3G.MAGLI.pdb

Spiral w/ Glitch

YQ

QMAG83.spc

YQi.MAGLI.pdb

injection transform

    (loop model)

 

YQr.MAGLI.pdb

recirculation transform

QR1

QMAG83.spc

RQi.MAGLI.pdb

injection transform

    (loop model)

 

RQr.MAGLI.pdb

recirculation transform

Ring Dipoles

(correct transform)

BDDBLSP.spc

NBDDIPOS.MAGLI.pdb

Spiral Model

 

CRDIPOH.MAGLI.pdb

0.5 mm resolution

SD5

BDDBLSP.spc

SD5DIPOS.MAGLI.pdb

no bend transform

Ring Dipoles

(wrong transform)

BDDBLSP.spc

CRDIPOS.MAGLI.pdb

Spiral Model

DMAG02.spc

CRDIPO.MAGLI.pdb

1 layer of loops

Pulsed Dipole

DMAG67mod.spc

NPDi.MAGLI.pdb

injection transform

    (spiral model)

 

NPDr.MAGLI.pdb

recirculation transform

 

MagLi spc files are located at:   http://www.umer.umd.edu/secure/Magnets/

WARP pdb files are located on the following machines:directories:        

u8.umd.edu:/home/WARP/Magnets/

ebte.umd.edu:/home/WARP/Magnets/

umer.umd.edu:/ebte/pywarp/rscripts/

marvin.umd.edu:/work/shared/Magnets/

accel.umd.edu:/home/ebte/Magnets/

 

References

Terry Godlove, “Printed-Circuit Dipole and Quadrupole Design Summary”, UMER-2004-0728-TFG.

D.F. Sutter, UMER Memo, "Modified Quadrupole Printed-Circuit Windings," UMER071024.

Santiago Bernal, “‘New’ Approach to Effective Length and Strength of UMER Quadrupoles,” UMER-060220-SB-revised.

Rami Kishek, “Refined Model for UMER Quadrupoles,” UMER-2010-0204-RAK.

Rami Kishek and Max Cornacchia, “Modeling of UMER Dipoles,” UMER-2010-0630-RKMC.

Rami Kishek, “New Empirical Formula for IPR Solenoids,” UMER-121697-RK.

Santiago Bernal, “New Hard-Edge Model for UMER Solenoid,” UMER-060306-SB.

 

Created by ramiak
Contributors : R.A. Kishek, S. Bernal, T.F. Godlove, M. Pruessner
Last modified 2010-11-05 05:30 PM

© UMER, 2005-2012
The UMER Project is supported by the U.S. Department of Energy, Office of Science, and by the US Department of Defense, Office of Naval Research and the Joint Technology.